Math 261

Fall 2023
Lecture 28

Feb 19-8:47 AM

$$
\begin{aligned}
& \text { Graph of } 8\left(x^{2}+y^{2}\right)^{2}=100\left(x^{2}-y^{2}\right) \text { is given } \\
& \text { below verify that }(3,1) \\
& \begin{array}{r}
8 \cdot 10^{2}=100 \cdot 8 \\
800=800
\end{array} \\
& 8\left(x^{2}+y^{2}\right)^{2}=100\left(x^{2}-y^{2}\right)=\left.\frac{d y}{d x}\right|_{(3,1)} \\
& \text { Take derivative of both sides } \\
& 8 \cdot 2\left(x^{2}+y^{2}\right)^{1} \cdot\left(2 x+2 y \cdot \frac{d y}{d x}\right)=100\left(2 x-2 y \cdot \frac{d y}{d x}\right) \\
& \text { at }\left.(3,1) \rightarrow \frac{d y}{d x}\right|_{(3,1)}=m_{\text {tan. line }} \\
& 16(\underbrace{3^{2}+1^{2}}_{10}) \cdot(6+2 m)=100(6-2 m) \\
& \begin{array}{l}
8 \\
160(6+2 m)=100(6-2 m)
\end{array} \\
& 48+16 m=30-10 \mathrm{~m} \\
& 26 m=-18 \quad m=\frac{-18}{26}=\frac{-9}{13} \\
& \begin{array}{c}
y-1=-\frac{9}{13}(x-3) \\
13 y-13=-9(x-3) \\
13 y-13=-9 x+27
\end{array} \quad\left[\begin{array}{c}
9 x+13 y=40 \\
\text { standard } \\
\text { form. }
\end{array}\right.
\end{aligned}
$$

Oct 17-10:37 AM
use linear approximation to
estimate $\sqrt[3]{66} \quad \square_{b} f(x) \approx f(a)+f^{\prime}(a)(x-a)$

$$
\begin{aligned}
& \sqrt[3]{66} \approx \sqrt[3]{64}=4 \quad \sqrt[3]{x} \approx f(64)+f^{\prime}(64)(x-64) \\
& f(x)=\sqrt[3]{x} \quad f^{\prime}(64)=\sqrt[3]{64}=4 \quad=4+\frac{1}{48}(x-64) \\
& a=64 \quad f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 \sqrt[3]{x^{2}}} \\
& \\
& \\
& f^{\prime}(64)=\frac{1}{3 \cdot \sqrt[3]{644^{2}}}=\frac{1}{3 \cdot 16}=\frac{1}{48}
\end{aligned}
$$

Near $a=64$

$$
\sqrt[3]{x} \approx 4+\frac{1}{48}(x-64)
$$

$$
\Delta=4+\frac{1}{24}, \begin{aligned}
& =\frac{97}{24}
\end{aligned}
$$

Now let $x=66$

$$
\sqrt[3]{66} \approx 4+\frac{1}{48}(66-64)=4+\frac{2}{48}=\frac{4.042}{4}
$$

Now use your cake to find $\sqrt[3]{66} \approx 4.0412$

Use linear approximation
to estimate $\sqrt{80.9} \longrightarrow f(x) \approx f(a)+f(a)$
Ans in reduced fraction.

$$
\sqrt{x} \approx 9+\frac{1}{18}(x-81)
$$

$$
\sqrt{80.9} \approx \sqrt{81}=9
$$

for $x=80.9$

$$
\begin{aligned}
& f(x)=\sqrt{x} \quad f(81)=\sqrt{81}=9 \quad \sqrt{80.9} \approx 9+\frac{1}{18}(80.9 .81) \\
& a=81 \quad f^{\prime}(81)=\frac{7}{2 \sqrt{81}}=\frac{1}{2.9}=\frac{1}{18} \approx 9+\frac{1}{18}(-.1) \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{x}}=9-\frac{1}{180} \\
& \text { use Your calc. to find } \\
& \sqrt{80.9}=8.994=\frac{1619}{180} \\
& \approx 8.994
\end{aligned}
$$

